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Abstract. Table is an efficient way to represent a huge number of facts
in a compact manner. As practitioners in the vertical domain share lots of
common prior knowledge, they tend to represent facts more concisely us-
ing matrix-style tables. However, such tables are originally intended for
human reading, but not machine-readable due to their complex struc-
tures including row header, column header, metadata, external context,
and even hierarchies in headers. In order to improve the efficiency of
practitioners in mining and utilizing these matrix-style tables, in this
study we introduce a challenging task to discover fact-overlapping rela-
tions between matrix-style tables. This relation focuses on fine-grained
local semantics instead of overall relatedness in conventional tasks. We
propose an attention-based model for this task. Experiments reveal that
our model is more capable of discovering the local relatedness, and out-
performs four baseline methods. We also conduct an ablation study and
case study to investigate our model in detail.

Keywords: matrix-style tables · semantic matching · fact-overlapping
relations · richly formatted documents

1 Introduction

Tables, as a compact representation of data, are widely used on the Web and
in vertical domains. Mining the relationships between tables has its value in a
range of applications, such as table retrieval [22], knowledge base construction,
entity disambiguation, and intelligent reading [1, 2, 10, 12]. Taking intelligent
reading [2, 12] as an example, professional documents in vertical domains are
usually hundreds of pages long with dozens of tables. These tables are related to
each other so that they can provide coherent evidence to support the arguments
in the document. However, the related tables might scatter over hundreds of
pages, and tracking these linked content requires flipping back and forth in the
current reading experiences. It is even more cumbersome for reading on a digital
⋆ equal contribution
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Consolidated Balance Sheet as at 30 June 2018
5.1 Consolidated Financial Statements

5. Financial Statements

Unaudited(US$M) 2018 2017
EQUITY
Attributable to BHP shareholders
Share capital – BHP Billiton Limited 1,118 1,186
… … …
Total equity 60,670 62,726

Row Header Context

Age 35

Sex Male

Bob

Name Age Sex

Alice 21 Female

Bob 35 Male
Relational Table

Entity Table

Matrix Table

Column Header Metadata Data Cell

Fig. 1. Examples of entity, relational and matrix tables.

device than using a physical document. Hence, relating tables and displaying
them dynamically based on the readers’ goal will greatly enhance the reading
efficiency.

Distinguished by how the information in the table is organized, there are
entity tables, relational tables, and matrix-style tables1(exemplified in Fig. 1).
Matrix tables have a more concise layout than other kinds of tables. Practitioners
in vertical domains usually put plenty of data and facts into matrix tables in
richly formatted documents [28]. For the public disclosure documents from the
financial area, the proportion of matrix tables is as high as 90% based on our
empirical study. Therefore, in this paper, we study the relationships over matrix
tables within a richly formatted document.

As shown in Fig. 1, a matrix table usually consists of five components: context,
metadata, column headers, row headers, and data cells (see the legend for each
component in Fig. 1). Here, the metadata, column headers, row headers and data
cells are the areas inside a table [9, 23]. And the context is the outside-table
context, including all the text along the path from the root to this table leaf
node in the tree of logical document hierarchy [17]. Since there exist approaches
to identify the table components [16, 20, 23], in this study, we assume that all
these table components are extracted in some predecessor steps.

Additionally, each data cell in a matrix table refers to a fact whose complete
semantics is scattered in multiple table components. For example, in Fig. 2, the
fact expressed by the data cell in the dashed box is shown at the bottom. It is
a complex composition of several cells from context, metadata, column and row
headers. Thus, a matrix table T conveys a set of facts. Their values lie in data
cells, while their semantics are presented in the table context, metadata, row
and column headers succinctly.

In this paper, we study the semantic matching problem over matrix tables
within a document. Our goal is to determine whether two tables have fact-
overlapping relations. Specifically, if two tables have some facts in common, they
have fact-overlapping relations. For example, the two tables from document BHP
Annual Report 2018 are shown in Fig. 3, where the left one is the consolidated
1 matrix tables for short in the following of this paper.
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5.1.5  Changes in Equity for the year ended 30 June 2018
5.1  Consolidated Financial Statements

5. Financial Statements

In the consolidated
dividends of transactions with ownerschanges in during 1 July 2017 30 June 2018and

US$M

Attributable to BHP shareholders

Non-
controlling

interests
Total 

equity

Share capital

…
Retained 
earnings

Total equity 
attributable

to BHP 
shareholders

BHP 
Billiton 

Limited

BHP 
Billiton 

Plc
Balance as at 1 July 2017 1,186 1,057 … 52,618 57,258 5,468 62,726
Total comprehensive income - - - (87) 3,695 3,608 1,118
Transactions with owners:

Purchase of shares by ESOP Trusts - - … - (171) - (171)
... … … … … … … …
Dividends 153 - … (5,221) (5,221) (1,499) (6,720)

Balance as at 30 June 2018 1,118 1,057 … 51,064 55,592 5,078 60,670

Implicit Hierarchy
in Row Headers

Explicit Hierarchy
in Column Headers

Fact expressed by this cell:
In share capital of BHP Billiton Limited attributable to BHP shareholders, the consolidated changes in dividends of 
transactions with owners during 1 July 2017 and 30 June 2018 is $ 153 million US dollars.

Fig. 2. A table is a set of facts. The fact of a data cell is shown at the bottom, which
involves many cells in multiple components, shown in different colors. The row and
column headers have hierarchical structures, shown in dotted lines.

balance sheet, and the right one is the consolidated statement of changes in equity.
They are semantically matched as the facts of data cells marked in boxes exist
in both tables.

Matching the two tables in Fig. 3 has its practical value. In financial area,
people read disclosure documents with different purposes. For investors, they
read documents to learn about the operation of the company. When looking at
the retained earnings in the left table, readers want to investigate how it changed
during the year, which is detailed in the right table. For financial practitioners,
they need to ensure the correctness and consistency of the disclosure of the
company’s financial position. Therefore, they have to cross-check the numbers
in the left table with the numbers in the right table. Both groups of people
want to link these two tables together to facilitate their reading process and to
avoid jumping back and forth to find relating tables in a document of hundreds
of pages. To this end, we propose to equip readers with a kind of table-linking
functionality. When clicking on a table, a list of tables having fact-overlapping
relations with that table is shown to the user as a sidebar on the right.

Simply linking two tables with at least one data cell with the same value
cannot solve this problem, since the same value might refer to different facts and
some mistaken data cells with different values might refer to the same fact [4].
Hence, we need to model the semantics of the facts inside matrix tables. The
challenges of this task are summarized in three aspects.

First, the same fact can be expressed differently in terms of the table layout
and its surface form. For example, for the common fact with value “1,118” in
Fig. 3, the date of the fact is contained in its column header and context in the
left table, while it is contained in its row header in the right one.

Second, the fact-overlapping relations focus on the semantic similarity at the
fact level locally. For example, the two tables shown in Fig. 3 are very different
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Unaudited
US$M

Attributable to BHP shareholders

Non-
controlling

interests
Total 

equity

Share capital

…
Retained 
earnings

Total equity 
attributable

to BHP 
shareholders

BHP 
Billiton 

Limited

BHP 
Billiton 

Plc
Balance as at 1 July 2017 1,186 1,057 … 52,618 57,258 5,468 62,726
Transactions with owners:

Purchase of shares by
ESOP Trusts - - … - (171) - (171)
... … … … … … … …
Dividends - - … (5,221) (5,221) (1,499) (6,720)

Balance as at 30 June 2018 1,118 1,057 … 51,064 55,592 5,078 60,670

Consolidated Statement of Changes in Equity for the year ended 30 June 2018
5.1 Consolidated Financial Statements

5. Financial Statements

Consolidated Balance Sheet as at 30 June 2018
5.1 Consolidated Financial Statements

5. Financial Statements

Unaudited
2018

US$M
2017

US$M
EQUITY
Attributable to BHP shareholders
Share capital – BHP Billiton Limited 1,118 1,186
Share capital – BHP Billiton Plc 1,057 1,057
… … …
Retained earnings 51,064 52,618
Total equity attributable to BHP shareholders 55,592 57,258
Non-controlling interests 5,078 5,468
Total equity 60,670 62,726

Consolidated balance sheet Consolidated Statement of Changes in equity

Fig. 3. Two semantically matched tables. The overlapping facts are shown in the boxes.

on the whole, but they have overlapping facts. In extreme cases, there could be
only one overlapping fact in two semantically matching tables. This requires to
retain the detailed local information when modeling the table. However, previous
studies in semantic matching usually consider global relatedness in the sense that
two objects have similar meanings on the whole, including matching between
sentences [15,18,26], documents [29], images [30] and tables [1, 10,22].

Third, understanding the exact fact of each data cell is challenging since
matrix tables have complex structures so that the meaning of facts scatters over
multiple components as we mentioned before. Moreover, row and column headers
might have implicit and explicit hierarchies. Take Fig. 2 as an example. The
implicit hierarchy of row headers has three levels, conveyed by their visual cures
(e.g. font styles, indentation) and text semantics without a unified standard [5].
Its explicit hierarchy of column headers also has three levels and is presented
by the internal table structure with merged cells. With such hierarchies, the
integrates of a fact might involve several cells in column and row headers. In
Fig. 2, the fact of the data cell in the dashed box involves four cells in the row
headers (in orange) and three cells in the column headers (in green).

To preserve the meanings of table facts while tolerating the diverse ex-
pressions in tables, we propose an attention-based method for fact-overlapping
matching between matrix tables. It employs a deep neural network that con-
sists of two components: table embedding network, and symmetric matching
network. The input of this neural network is a pair of tables. First, the em-
bedding network calculates the embedding of each table by considering its 4
components, namely context, metadata, (hierarchical) column headers, (hierar-
chical) row headers. Then, a symmetric matching network entangles these two
embeddings to discover all their local fact-level relatedness and predicts whether
these two tables are semantically matched or not. Experiments reveal that our
attention-based method is more suitable for this task than four baseline methods
with 0.75, 0.77, 0.67 and 0.29 absolute improvement on F1 respectively. More-
over, our attention-based method has a certain ability to explain why and where
two tables are semantically matched, which is illustrated in Section 5.3. We also
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conduct an ablation study to check the importance of each table component and
some case studies to investigate our model in detail.

2 Related Work

We introduce the work on semantic matching of two tables as follows. Sarma et
al. [22] proposed a table retrieval task that given a query table, retrieved the
most similar tables. They took each table as a set of attributes (i.e. column head-
ers in relational table) and linked the attributes of two tables to form a weighted
bipartite graph. Then, they used the max-weight matching as matching scores
of two tables. We consider this method as a baseline in our experiments. Fetahu
et al. [10] proposed a deep learning-based method to recognize two types of table
relations: equivalent and subPartOf. But they only focus on the relational tables
with column headers, and their method is not suitable for matrix tables. Be-
sides the matching of tables as a whole, some studies on schema matching [3,19]
concentrated on the correspondence of columns between two tables [11]. Zhang
and Chakrabarti [32] computed semantic matching between columns of web rela-
tional tables. If two tables describe different attributes of the same set of entities,
they can be used to augment the attributes of entities. The existing studies on
the relationships between tables mainly focus on entity and relational tables,
since these two types of tables with simple structures are prevalent on the Web
(accounting for 98.3% of tables on Web according to Web Data Commons [14]).

Other studies matched tables to other things like query or knowledge base [7,
24, 33]. Zhang and Balog [33] represent text query and table as a set of vectors
of words respectively and compute their similarity. We adopt this method as
a baseline in the experiments. Additionally, matching between a table and a
knowledge base establishes the mapping between the entities described by them
in order to understand the table data [21,34].

There are also some related studies about table classification. Tables have
various layouts, and there are many standards to categorize them. For practi-
cal purposes, Ahmadov et al. [1] categorized tables to five classes: relational,
entity, matrix, layout, and others. In this paper, we adopt this taxonomy and
focus on matrix tables as it is prevalent in vertical domains. Also, Wang et
al. [27] proposed the taxonomy with three table classes: 1-dimensional tables,
2-dimensional tables, and complex tables. Considering the layout and structure
of tables, Crestan and Pantel [6] proposed a more fine-grained classification,
which classifies tables into two broad categories: relational knowledge and lay-
out. Furthermore, based on structural characteristics, Lautert et al. [13] divided
relational knowledge tables into concise, nested, multi-valued, and split tables.

3 Network Architecture

As we have discussed in Section 1, understanding the exact fact of each data
cell is challenging. Therefore, we model whole semantics of tables to determine
fact-overlapping relations end to end. Our Semantic Matching (SM) method
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employs an attention-based deep neural network that consists of two compo-
nents: table embedding network and symmetric matching network. The input of
this neural network is a pair of tables. First, the embedding network calculates
the embedding of each table, which preserves its local semantic information.
Then, these two table embeddings are fed into the symmetric matching network
that predicts whether these two tables are semantically matched or not. Our
symmetric matching network leverages an attention encoder to discover the lo-
cal semantic matching on the fine-grained level between tables, and leverages
another attention encoder to aggregate the local matched semantics for classi-
fication. We adopt supervised learning to train this deep neural network model
with cross-entropy as the loss function.

3.1 Table Embedding

Since the local semantics of tables are essential to the task of determining
fact-overlapping relations, we encode one table to a sequence of cell embeddings
instead of a fixed-length embedding. We encode four components of a table
to form its embedding sequence: row headers, column headers, metadata, and
context, as described in Section 1. Each component contains some cells (we call
each heading in a header cell and also each title in the table context as a “cell” for
convenience). We first encode each cell into a vector, add component embeddings,
and then serialize vectors of four components into a sequence of vectors as the
embedding of the table. Such embeddings preserve the local information in the
table.

The first step is cell embedding. For row headers or column headers with
explicit hierarchy (like the column headers in Fig. 2), we extend the text of a
leaf cell by joining the texts of cells on the path from root to leaf with a special
token “&”. For example, the extended text of the cell in the second column
header in Fig. 2 is

Attributable to BHP shareholders & Share capital & BHP Billiton Plc
As you can see, each joined text contains the complete local and hierarchical
information.

As each leaf node corresponds to a column or row in the table, and we have
extended its text to incorporate the hierarchy, we only use the leaf cells for table
embedding. A transformer [25] encodes the (extended) text of each leaf cell into
a text embedding et. Moreover, to distinguish cells among different components,
we introduce component embeddings es for each component (like the segment
embedding in [8]). Finally, cell embedding is

e = et + es ∈ Rdm ,

where dm is the dimension of embedding.
The second step is table embedding. We do not compress the table into a

fixed-length embedding as it will lose the information of individual cells. Instead,
the table embedding is a sequence of cell embeddings. In each component, we
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stack the leaf cells by order. Then, we stack these four components into an
embedding sequence

ET = [ec1 , ..., ecnc
, er1 , ..., ernr

, ex1 , ..., exnx
, em1 , ..., emnm

] ∈ Rn×dm ,

where eci is the embedding of the i-th cell in column headers (r for row headers,
x for context and m for metadata), n = nc +nr +nx +nm is the number of leaf
cells in the four components. Note that we only encode the four components in
a table and ignore data cells, since data cells, usually containing digits, are not
semantically expressive without the other four table components.

3.2 Symmetric Matching Network

The above table encoding preserves the local semantic information of the table
to the maximum extent so that we can explicitly carry out the local semantic
interaction between tables in the symmetric matching network. The symmetric
matching network takes as inputs two table embeddings, ET1 and ET2 , and
outputs the probability that they are matched. First, we entangle the embeddings
of these two tables, to get E′

T1
and E′

T2
, where each cell of T1 is informed of (by

attention on) every cell in T2 and vice versa. This allows the local semantic
matching between two tables. Then, we aggregate E′

T1
and E′

T2
respectively to

get two vectors eT1 and eT2 , which gathers the local matched semantics. Finally,
the prediction layer outputs the probabilities. Both entangling and prediction
layers are symmetric with regard to T1 and T2.

The building block of our network is an attention encoder. In brief, an at-
tention encoder Q′ = Attention(Q,V ) uses Q,V as input and gets a new em-
bedding Q′, where Q and Q′ ∈ Rl×dm and V ∈ Rm×dm . This attention encoder
Attention(Q,V ) will be detailed in Section 3.3.

In entangling layer, taking ET1
and ET2

as Q and V respectively we get E′
T1

:

E′
T1

= Attention1(ET1
, ET2

). (1)

The attention encoder allows each cell in table T1 to interact with every cell in
table T2. This is essential to discover the local semantic matching on the fine-
grained level between tables. We will show the effectiveness of this encoder in
the case study. Symmetrically, we get E′

T2
= Attention1(ET2 , ET1).

In the aggregation layer, a learnable special embedding vector e[TAB] is used
to aggregate the information of a table:

e∗T1
= Attention2(e[TAB], E

′
T1
). (2)

Here, e∗T1
is an aggregated vector representing table T1 after attention on table

T2. Using the attention allows this aggregation to focus on the local matched
semantics flexibly instead of rough semantics such as mean or max. We also
show the effectiveness of this encoder for capturing local matched semantics in
the case study. Similarly, we get e∗T2

= Attention2(e[TAB], E
′
T2
).
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In the prediction layer, we concatenate e∗T1
and e∗T2

in both orders and com-
pute eO as follows:

eO = ElementwiseMax(FFN(concat(e∗T1
, e∗T2

)), FFN(concat(e∗T2
, e∗T1

))) (3)

where FFN is a feed-forward network, and the element-wise maximum of the
two vectors ensures that this matching network is symmetric. Finally, eo is used
for classification. The symmetric property of our model ensures that no matter
the input is (ET1

, ET2
) or (ET2

, ET1
), the result will be the same.

3.3 Attention Encoder

The attention encoder is the building block of the symmetric matching network.
It takes as input Q and V , and outputs Q′:

Q′ = Attention(Q,V ) (4)

where Q and Q′ ∈ Rl×dm , V ∈ Rm×dm . The attention encoder consists of b
Layers (Layer1, ..., Layerb) in sequence:

Qi = Layeri(Qi−1, V ) (i = 1, · · · , b) (5)

where Q0 = Q as the initial input and Q′ = Qb as the final output. Each
layer consists of Multi-head Attention Layer (MAL) and Feed-Forward Net-
work (FFN). There is Residual Connection (RC) and Layer Normalization (LN)
following both MAL and FFN. The detailed structure of Layeri is as follows:

Zi,1 = MALi(Qi−1, V ) (6)
Zi,2 = LNi,1(Qi−1 + Zi,1) (7)
Zi,3 = FFNi(Zi,2) (8)
Qi = LNi,2(Zi,2 + Zi,3) (9)

MAL consists of multiple attention operations. It concatenates the results of
these operations to represent a richer attention. The definition of MALi is as
follows:

MALi(Qi−1, V ) = Concat(Hi,1, · · · ,Hi,h)W
O
i (10)

Hi,j = Wi,j(VWV1
i,j ) (11)

Wi,j = Softmax

(
(Qi−1W

Q
i,j)(VWV2

i,j )
T

√
dv

)
(12)

where Hi,j is the j-th head of the multi-head attention in the i-th layer, and h is
the number of heads. The projections are parameter matrices WQ

i,j ,W
V1
i,j ,W

V2
i,j ∈

Rdm×dv and WO
i ∈ R(h·dv)×dm . And we let dv = dm/h.

The attention weights can reveal the relations among elements in two inputs,
thus give an interpretation of the prediction result. To analyze the effectiveness
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of our methods in Section 5.3, we define the summary weights of the attention
encoder as:

SW =
∑

j=1,··· ,h

Wb,j (13)

where SW is a vector, and its k-th dimension SWk ∈ [0, h] indicates the im-
portance of the k-th cell in V to Q. The greater the value of SWk, the more
important the k-th cell in V is to Q. Here, b is the index of the last layer,
indicating that we only display the weights of the last attention layer.

4 Experimental Setup

4.1 Dataset

We downloaded public annual reports from CNINFO2. They are all long docu-
ments with on average 71.12 pages and 100.8 tables per document. The average
numbers of cells in row header, column header, context and metadata per table
are 7.91, 4.22, 1.84 and 0.18 respectively. We annotated the matching relations
among tables in each document, which took three financial practitioners more
than a month to complete. In a document, for each table, annotators find out
all tables that match with this table, and other table pairs that do not match
are set to negative samples. They do not annotate which parts of table facts
are overlapping as it is laborious. There are 358,111 table pairs in total in these
documents. And the ratio of matching and not matching pairs is 1:66. All the
table pairs are randomly divided into a training and test dataset by 9:1.

4.2 Baselines

There are no previous studies that can be directly applied to our task. Thus, we
adapt some of them to build the following four baseline methods.
Term-based Schema Matching (TSM). We represent each table by bag-of-
words of its four components3. The matching score of two tables is the Jaccard
index of their token sets. Two tables are matched if the matching score is greater
or equal than a threshold.
Embedding-based Schema Matching (ESM). Using similar methods in
TSM, we represent each table as a set of tokens in its four table components.
Then, we build a bipartite graph where an edge links each pair of tokens from
the two sets. The edge weight is computed as the cosine similarity between the
embeddings of the two tokens. Finally, the max-weight matching score of the
bipartite is used as the similarity between the two tables [22]. We regard two
tables as a positive sample if their similarity is more than a threshold. In detail,
we use the method in [31] to train the token embeddings.
Learning-based Schema Matching (LSM). We perform a learning-based
baseline. In this baseline, we convert each table to a binary vector B whose
2 http://www.cninfo.com.cn. A financial information disclosure website.
3 We tokenize each cell using Jieba, a popular Chinese word segmentation toolkit.

http://www.cninfo.com.cn
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length is equal to vocabulary size. If a word wi appears in the table and its
index in the vocabulary is i, we set Bi to 1, otherwise 0. For a pair of tables,
we concatenate the two table vectors as Bp = [B1;B2]. Then Bp is regarded as
the input feature, the relation between the two tables is regarded as the label,
which are put into a logistic regression classifier for training.
Semantic Matching without Attention Encoder (SM−). The above three
methods use the bag-of-words model. In this baseline, we first use the table em-
bedding component (detailed in Section 3.1) to preserve both the term sequence
in each table cell and the hierarchies in row and column headers. Then, the
symmetric matching network is replaced with the following component [33]: four
similarity scores (Early, Late-max, Late-sum, Late-avg) between two sets of vec-
tors are computed, and used as the features for classification of matching or
not.

4.3 Experimental Settings

We use the Precision, Recall, and F1 to evaluate the above methods. Each
feed-forward network is a fully connected layer with two linear transformations
(dm×2dm and 2dm×dm) and ReLU in between. We apply Adam for optimization.
10% of the training data are reserved as the validation set to select the best
hyper-parameters. As a result, the number of blocks b in each cross encoder is
3 (over 1, 3, 5); the dimension of embeddings dm is 128 (over 128, 256, 512);
the number of heads h in each multi-head attention is 4 (over 4, 8); and the
dimension of each head dv is 32 (over 32, 64); and the learning rate is 10−4 (over
10−4, 10−3, 10−2).

5 Experimental Results

5.1 Results of Different Methods

Table 1. Table matching results on the test set.

Model Pre. Rec. F1

TSM 0.1016 0.0841 0.0920
ESM [22] 0.0668 0.0682 0.0675
LSM 0.0944 0.7628 0.1680
SM− [33] 0.6920 0.4559 0.5496
SM 0.8685 0.8090 0.8376

Table 1 shows the results of table matching of each method on the test
dataset. The F1 score of TSM and ESM method peaks at threshold 0.5, 0.8099
in the training set respectively. Their corresponding F1 on the test set are 9.2%
and 6.75%. The learning-based method LSM also has only achieved 16.8% F1.
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The poor performance of these three methods indicates that similarity on terms
is not adequate for this problem. SM− method has great improvement compar-
ing with TSM, ESM, and LSM methods. Because it takes into account both the
term sequence in each table cell and the hierarchies in row and column head-
ers. This proves the effectiveness of our table embedding network. However, as
the SM− method does not focus on the local semantics, its performance is still
poor in this task. SM performs best among these models. The absolute F1 im-
provement is 74.56%, 77.01%, 66.96% and 28.80% compared with TSM, ESM,
LSM and SM−. Compared with SM−, our SM model takes more attention on
local semantics by our symmetric matching network. Supported by the fact of a
larger improvement in recall than precision, we argue that SM is more capable
of discovering overlapping facts at the local level.

5.2 Ablation Study

Table 2. Ablation study on components, layout and symmetric model design.

Ablation Pre. Rec. F1

SM 0.8685 0.8090 0.8376
– Column headers 0.8391 0.7971 0.8176
– Metadata 0.8273 0.8076 0.8173
– Context 0.6574 0.6548 0.6561
– Row headers 0.6540 0.5455 0.5948
– Headers 0.6553 0.7088 0.6810
– Hierarchy 0.8499 0.7984 0.8234
– Component embedding 0.8399 0.8090 0.8242
– Symmetric 0.8630 0.7721 0.8150

To analyze the effectiveness of each component of tables for our model, we
ablate each component of tables in the SM method respectively. As shown in
Table 2, we list components by F1 score after ablation in descending order.
When we ablate column headers, F1 only decreases by 2%. By analyzing the
dataset, we find most of the column headers are about the time, like 2016, 2017.
As one document usually describes financial position within the same period
of time, removing column headers has less impact on semantic matching over
tables. Metadata also only has little impact on performance, since the metadata
appears less frequently in the dataset and usually describes the unit of data cells.
However, as removing column headers and metadata mainly deteriorates the
precision, we think they provide information to filter out false-positive samples,
but less information for matching. When we ablate context, F1 decreases by
18.15%, this means that it is important information for this task. Also, ablating
row headers will decrease F1 by 24.28% and severely hurt the recall (to 54.55%).
So, row headers are very important in discovering matching information.
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The result of ablating both column and row headers are shown in the “-
Headers” row, which uses only metadata and context (MX). We denote the
model ablating only row headers (retaining column headers, metadata, and con-
text) as CMX. An interesting phenomenon is that although with more informa-
tion (column headers), CMX performs poorer than MX (59.48% vs. 68.10% on
F1). And the difference comes from recall (54.55% vs. 70.88%). We argue that
this is because the CMX model overfits the training set on the column informa-
tion. As discussed above, row headers contain vital information for matching.
Thus, both CMX and MX, without row headers, do not have enough information
for matching. As the column contains little information for matching, it might
become noise for the CMX model. To examine this, we report the result on the
training set: the recall of the CMX is higher than (86.11% and 80.56%). It means
that the CMX tries to use column headers to improve its recall which did not
generalize well. And that results in overfitting and worse results on the test set.

We also study our modeling on the table layout. The first is the hierarchy
of headers. For each cell on the tree, we directly use its text (not extended)
for text embedding. All cells including non-leaf nodes are used. The result is
shown in the “-Hierarchy” row. The F1 score drops by 1.42% after removing
hierarchical information. The second is the component type, which is shown in
the “-Component embedding” row. We observed that the recall of the model
did not decrease, but the precision drops by 2.86%. The lacking of hierarchi-
cal information and component type decreases the effectiveness of the model,
which indirectly proves that the table layout affects the fact-overlapping rela-
tions. Therefore, it is necessary to keep the layout information of the table in
table embedding.

We also test the symmetric design in the model by replacing symmetric EO

with an asymmetric one using

eO = FFN(concat(e∗T1
, e∗T2

)) (14)

instead of Formula (3) in SM. Thus, changing the order of two tables may lead
to different results in this model. We select the one with the highest confidence
as the result of a table pair. The result is shown in the “-Symmetric” row. The
symmetric design outperforms the asymmetric model by 2.26% on F1.

5.3 Case Study

We show two cases in Fig. 4 to show that the SM can correctly attend on cells
related to their overlapping facts. The SM model correctly predicts that both
cases have fact-overlapping relations. We show the table pair A and B in each
case and visualize the summary weights defined in Formula (13). In table A, we
show the summary weight on each cell in Attention2 for e[TAB]. In table B, we
show the weight on each cell in Attention1 for a specific cell in table A. Cells
with darker shading have larger weights.

In the first case, Table A is a detailed sheet about “Surplus reserve” with
only one row “Statutory surplus reserve”. Meanwhile, “Surplus reserve” is one of
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Table B

Table A

𝐸𝐸[𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇]

Table B

Table A

𝐸𝐸[𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇] 40

Case One Case Two

4 is the number of 
heads in our model

Fig. 4. The illustration of the interpretability of SM method by two cases. The selected
data cells have the same fact in each case.

the row headers in Table B. Weights in Table A indicate that “(16) Surplus re-
serve” and “Statutory surplus reserve” in Table A are important for classification.
So, in table B, we show the weight of each cell corresponding to “(16) Surplus
reserve”. It demonstrates that “December 31, 2017 balance sheet”, “Owner’s eq-
uity”, “Surplus reserves” and “Undistributed profit” are important. That means
our model attends to the correct cells.

In the second case, Table B details the “Fixed assets” that contains the
changes in depreciation of fixed assets. Meanwhile, “Of which: depreciation of
fixed assets” is one of the row headers in Table A. Weights in Table A indi-
cate that “Of which: depreciation of fixed assets”, “Amortization of intangible
assets” and “Long-term deferred expenses amortization” in Table A is impor-
tant for classification. Then, in Table B, we show the importance of each cell
corresponding to “Of which: depreciation of fixed assets”. It demonstrates that
the existences of “Fixed assets” and “Accumulated depreciation” in Table B
cause the importance of “Of which: depreciation of fixed assets” in Table A for
classification.

6 Conclusion

Automatically mining the relations among tables can support multiple applica-
tions. To this end, we propose an attention-based method to solve the problem of
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semantic matching over matrix tables. Our method consists of a table embedding
that preserves local semantic information of tables, and a symmetric matching
network that can discover the local semantic matching on the fine-grained level
between tables and aggregate the local matched semantics for classification. Ex-
periments reveal that the method works well in the local semantic similarity task
despite the diverse expressions of facts and complex layout of tables. Meanwhile,
through case studies, we demonstrate its ability to explain why two tables are
semantically matched.
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