

Numerical Formula Recognition from Tables

Qingping Yang^{1,2}, Yixuan Cao^{1,2}, Hongwei Li³, Ping Luos^{1,2,4}

¹ Institute of Computing Technology, Chinese Academy of Sciences, ² University of Chinese Academy of Sciences ³ Research Department, P.A.I. Ltd., ⁴ Peng Cheng Laboratory

Introduction

- Claims over the numerical relationships among some measures are commonly expressed as formulas in tabular forms
- This paper introduces the problem of numerical formula recognition from tables

Rethinking on Table

- Table is a kind of **language** that adopts a different linguistic paradigm from natural language.
- *Content words* are scattered regularly in table cells, and *visual grammar* express the grammatical relationships among the table cells.

Challenges

- Recognizing formulas require decoding the visual grammar while simultaneously understanding the textual information.
- Horizontal formulas are common in tables.
- Multiple formulas might appear in the same table cell.
- Formula Complexity

A	В	С
		2017
1	2018	US\$M
	US\$M	Restated
2 Continuing operations		
3 Revenue	*****	*****
4 Other income	*****	*****
5 Expenses excluding net finance costs	*****	*****
6 Profit/(loss) from equity accounted investments, related impairments and expenses	*****	*****
7 Profit from operations		*****
0		
Financial expenses	*****	*****
9 Financial income	*****	*****
10 Net finance costs	*****	*****
11 Profit before taxation	(4) *****	*****
12		
Income tax expense		
13 Royalty-related taxation (net of income tax benefit)		,,,,,,
14 Total taxation expense	*****	*****
15 Profit/(loss) after taxation from Continuing operations	*****	*****
16 Discontinued operations	*****	*****
17 Loss after taxation from Discontinued operations	*****	*****
18 Profit/(loss) after taxation from Continuing and Discontinued operations	(5) *****	(5) *****
19 Attributable to non-controlling interests	*****	*****
20 Attributable to BHP shareholders	*****	*****

Methods - TAFOR

- Problem Conversion.
 - A formula can be defined as: $r = f(e_1, ..., e_i, ..., e_n)$ Converted to a set of triplets as:

 $\{(r, f^1, e_1), \dots, (r, f^i, e_i), \dots, (r, f^i, e_i)\},$ where *r* is the result cell, *f* is the formula type, *e* is the element cell.

- Two Steps.
 - 1. Result Cell Detection
 - 2. Cell Pair Classification

How to encode a table and cell inside it?

Two-channel Model

Experiments

Table 2: Evaluation results.

	±	d	gr	avg	overall
HHM	42.57	46.29	48.78	46.37	44.08
HSM	68.00	78.97	74.45	67.12	72.05
TAFor	90.15	91.66	85.87	87.38	90.65
HHM + TAFor	90.02	93.58	92.19	89.18	91.31

Table 4: Ablation results.

	Result cell	Pair	Formula level				
	detection	level	±	d	gr	avg	overall
TAFOR	96.12	95.17	90.15	91.66	85.87	87.38	90.65
-text	61.43	65.42	64.24	0	0	46.40	48.78
-vision	94.42	93.93	87.86	90.89	83.69	83.59	88.77

The generalization ability of TAFOR

