Numerical Formula Recognition from Tables

Qingping Yang ${ }^{1,2}$, Yixuan Cao 1,2, Hongwei Li^{3}, Ping Luos ${ }^{1,2,4}$
${ }^{1}$ Institute of Computing Technology, Chinese Academy of Sciences
${ }^{2}$ University of Chinese Academy of Sciences
${ }^{3}$ Research Department, P.A.I. Ltd.
${ }^{4}$ Peng Cheng Laboratory

Background

- Claims over the numerical relationships among some objective measures widely exist in the published documents on the Web.
- These numerical relationships are often expressed in tabular forms.
- Task: Numerical Formula Recognition (NFR) from tables

Application

- Error Correction in Tables
- Numerical errors caused by formulas are inevitable, even in published documents which have been reviewed many times.
- These errors may cause severe consequences.
- 2012, JP Morgan suffered $\$ 6.5$ billion in losses and fines.
- 2013, the paper "Growth in a Time of Debt" led to unjustified austerity policies.

Application

- Formula Recommendation in Tables
- After users have filled in the table headers and overall table layout is developed, we can automatically suggest the formulas among table cell.

Challenges

- Numerical values and existing formulas are not reliable.
- Values in tables are error-prone. [1, 2]
- At least one error caused by a formula was found in more than 95% of spreadsheets. [3]
- Need a more reliable method.

Challenges

- Formula complexity
- A formula in table can be define as:

$$
r=f\left(e_{1}, \cdots, e_{i}, \cdots, e_{n}\right)
$$

- For example $r=e_{1} / e_{2}$ can be expressed as $r=f_{d i v}\left(e_{1}, e_{2}\right)$.

1. Diverse math function.
2. The number of arguments cannot be fixed in advance (e.g. SUM).
3. The order of arguments (e.g. division).
4. Commutative property (e.g. SUM, AVG, MIN, MAX)

Challenges

- Table representation complexity
- Table is a kind of language that adopts a different linguistic paradigm from natural language.

Challenges

- Table representation complexity
- Observation 1: Textual information on the header hierarchy is the key to understanding tables.

Challenges

- Table representation complexity
- Observation 1: Textual information on the header hierarchy is the key to understanding tables.
\qquad
\qquad

Challenges

- Table representation complexity
- Observation 1: Textual information on the header hierarchy is the key to understanding tables.
- Observation 2: The visual appearances serve as auxiliary information for representing formulas.
- Observation 3: Horizontal formulas are common in tables.
- Observation 4: Multiple Formulas might appear in the same table cell.

Solution Overview

- The formula recognition task \rightarrow a relation extraction task between two cells
- by first detect result cells and then classify cell pairs.
- To do the classification, a table cell encoding model TAFor is proposed which considers both textual and visual information.
- We leverage the text and visual appearance of table headers and table layout structure, which are more reliable features.
- Main idea: a formula \rightarrow several relations between r and e.
- Triplet: $\left(r, f^{i}, e\right)$
- A formula $r=f\left(e_{1}, \cdots, e_{i}, \cdots, e_{n}\right) \rightarrow\left\{\left(r, f^{1}, e_{1}\right), \cdots,\left(r, f^{i}, e_{i}\right), \cdots,\left(r, f^{n}, e_{n}\right)\right\}$
- For example, $r=f_{\text {div }}\left(e_{1}, e_{2}\right) \rightarrow\left\{\left(r, f_{d i v}^{1}, e_{1}\right),\left(r, f_{d i v}^{2}, e_{2}\right)\right\}$

Table 1: Examples of formulas with their triplets.

Name	In Definition 2.1	Computation Rule	Triplets	Label Group
Division (d)	$r=f_{d}\left(e_{1}, e_{2}\right)$	$r=e_{1} / e_{2}$	$\left(r, f_{d}^{1}, e_{1}\right),\left(r, f_{d}^{2}, e_{2}\right)$	$\mathrm{L}(\mathrm{d})=\left\{\right.$ none, $\left.f_{d}^{1}, f_{d}^{2}\right\}$
Growth Rate (gr)	$r=f_{g r}\left(e_{1}, e_{2}\right)$	$r=\left(e_{1}-e_{2}\right) / e_{2}$	$\left(r, f_{g r}^{\text {new }}, e_{1}\right),\left(r, f_{g r}^{o l d}, e_{2}\right)$	$\mathrm{L}(\mathrm{gr})=\left\{\right.$ none, $\left.f_{g r}^{\text {new }}, f_{g r}^{\text {old }}\right\}$
Average (avg)	$r=f_{\text {avg }}(\cdots)$	$r=\left(e_{1}+\cdots+e_{n}\right) / n$	$\left(r, f_{\text {avg }}, e_{1}\right), \cdots,\left(r, f_{\text {avg }}, e_{n}\right)$	$\mathrm{L}(\mathrm{avg})=\left\{\right.$ none, $\left.f_{\text {avg }}\right\}$
Addition and subtraction (\pm)	$r=f_{ \pm}(\cdots)$	$r=e_{1}-e_{2}$	$\left(r, f_{ \pm}^{+}, e_{1}\right),\left(r, f_{ \pm}^{-}, e_{2}\right)$,	$\mathrm{L}(\pm)=\left\{\right.$ none $\left., f_{ \pm}^{+}, f_{ \pm}^{-}\right\}$

Solution - Framework

1. Result Cell Detection
2. Cell Pair Classification

	A	B	C	D	E	F
1		2018			2017	
2		Revenue	\%	Changes from the Previous Year (\%)	Revenue	\%
3	Registered address					
4	China	*****	(2) *****	*****	*****	*****
5	Japan	*****	*****	*****	*****	*****
6	Singapore	*****	*****	*****	*****	*****
7	Korea	*****	*****	*****	*****	*****
8	Asia	(1) *****	*****	*****	*****	*****
9	Rest of world	*****	*****	*****	*****	*****
10		*****	*****	*****	*****	*****

Predicted:
Result cell: B8, C4

Formula:

$\mathrm{B} 8=$
$\mathrm{C} 4=$

Solution - Framework

1. Result Cell Detection

2. Cell Pair Classification

	A	B	C	D	E	F
1		2018			2017	
2		Revenue	\%	Changes from the Previous Year (\%)	Revenue	\%
3	Registered address					
4	China	*****	(2) *****	*****	*****	*****
5	Japan	*****	*****	*****	*****	*****
6	Singapore	*****	*****	*****	*****	*****
7	Korea	*****	*****	*****	*****	*****
8	Asia	(1) *****	*****	*****	*****	*****
9	Rest of world	*****	*****	*****	*****	*****
10		*****	*****	*****	*****	*****

Predicted:

$\left\{\mathrm{B} 8, f_{ \pm}, \mathrm{B} 4\right\},\left\{\mathrm{B} 8, f_{ \pm}, \mathrm{B} 5\right\}$
$\left\{\mathrm{B} 8, f_{ \pm}, \mathrm{B} 6\right\},\left\{\mathrm{B} 8, f_{ \pm}, \mathrm{B} 7\right\}$

Formula:

$\mathrm{B} 8=+\mathrm{B} 4+\mathrm{B} 5+\mathrm{B} 6+\mathrm{B} 7$
$\mathrm{C} 4=$

Solution - Framework

1. Result Cell Detection
2. Cell Pair Classification

Predicted:
$\left\{\mathrm{C} 8, f_{d i v}^{1}, \mathrm{~B} 4\right\},\left\{\mathrm{C} 4, f_{d i v}^{2}, \mathrm{~B} 8\right\}$

Formula:

$\mathrm{B} 8=+\mathrm{B} 4+\mathrm{B} 5+\mathrm{B} 6+\mathrm{B} 7$
$\mathrm{C} 4=\mathrm{B} 4 / \mathrm{B} 8$

Solution - Cell Encoding model

(a) Text module

Solution - Cell Encoding model

(b) Vision module

Solution - Cell Encoding model

(c) Combination and classification

Experiments

Table 2: Evaluation results.

	\pm	d	$g r$	$a v g$	overall
HHM	42.57	46.29	48.78	46.37	44.08
HSM	68.00	78.97	74.45	67.12	72.05
TAFOR	$\mathbf{9 0 . 1 5}$	91.66	85.87	87.38	90.65
HHM + TAFOR	90.02	$\mathbf{9 3 . 5 8}$	$\mathbf{9 2 . 1 9}$	$\mathbf{8 9 . 1 8}$	$\mathbf{9 1 . 3 1}$

Experiments

Table 4: Ablation results.

	Result cell detection	Pair	Formula level					
			d	$g r$	$a v g$	overall		
TAFor	96.12	95.17	90.15	91.66	85.87	87.38	90.65	
-text	61.43	65.42	64.24	0	0	46.40	48.78	
-vision	94.42	93.93	87.86	90.89	83.69	83.59	88.77	

Bad Cases

	A	B	C
1		2018	
2		Paid shares	\%
3	Alan	*****	*****
4	Jason	*****	*****
5	Bob	*****	*****
6	Alice	*****	*****
7	Tom	*****	*****
8		*****	*****

	A	B	C	D
1	Revenue	$\mathbf{2 0 1 9}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 7}$
2	Prime operating revenue	$* * * * *$	$* * * * *$	$* * * *$
3	Infrastructure	$* * * * *$	$* * * * *$	$* * * *$
4	Water	$* * * * *$	$* * * * *$	$* * * *$
5	Food	$* * * * *$	$* * * * *$	$* * * *$
6	Transport	$* * * * *$	$* * * * *$	$* * * *$
7	Other	$* * * * *$	$* * * * *$	$* * * *$
8	Total	$* * * * *$	$* * * *$	$* * * * *$

Future Work

- Named entity recognition in tables.
- Consider the common sense and prior knowledge.
- Combine deep learning and symbolic knowledge.

THANK YOU

