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ABSTRACT
Tables are omnipresent on the web and in various vertical domains,

storing massive amounts of valuable data. However, the great flexi-

bility in the table layout hinders the machine from understanding

this valuable data. In order to unlock and utilize knowledge from

tables, extracting data as numerical tuples is the first and critical

step. As a form of relational data, numerical tuples have direct and

transparent relationships between their elements and are therefore

easy for machines to use. Extracting numerical tuples requires a

deep understanding of intricate correlations between cells. The cor-

relations are presented implicitly in texts and visual appearances

of tables, which can be roughly classified into Hierarchy and Juxta-
position. Although many studies have made considerable progress

in data extraction from tables, most of them only consider hier-

archical relationships but neglect the juxtapositions. Meanwhile,

they only evaluate their methods on relatively small corpora. This

paper proposes a new framework to extract numerical tuples from

tables and evaluate it on a large test set. Specifically, we convert

this task into a relation extraction problem between cells. To repre-

sent cells with their intricate correlations in tables, we propose a

BERT-based pre-trained language model, TableLM, to encode tables

with diverse layouts. To evaluate the framework, we collect a large

finance dataset that includes 19,264 tables and 604K tuples. Exten-

sive experiments on the dataset are conducted to demonstrate the

superiority of our framework compared to a well-designed baseline.
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A B C

1 2019

2 Assets Changes from the
Previous Year (%)

3 Current 21,614 12.4 
4 Inventories 16,883 18.1 
5 Cash and cash equivalents 4,731 -4.2 
6 Non-current 2,341 5.0 
7 Trade and other receivables 921 17.9 
8 Inventories 1,420 1.2
9 Total 23,955 11.8 

2019 Current Assets21,614

DescriptionsValue

Numerical Tuples:

2019 Current Assets Changes from the previous year12.4

2019 InventoriesCurrent Assets Changes from the previous year18.1

2019 InventoriesCurrent Assets16,883

…
2019 Cash and cash equivalentsCurrent Assets4,731

Figure 1: An example illustrates the numerical tuples in a
table. The green boxes indicate the values; the blue boxes
indicate the descriptions. Best viewed in color.

14–18, 2022, Washington, DC, USA. ACM, New York, NY, USA, 9 pages.
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1 INTRODUCTION
As a semi-structured data structure for efficiently organizing, pre-

senting, and analyzing a range of data, tables are omnipresent on

the Web and vertical domains. There are more than tens of billion

tables on the Web [2]. A study shows over 750 million users of Mi-

crosoft Excel, who produce massive amounts of tables in enterprise

environment [11]. Tables are typically treated as a flexible database

to store high-dimensional data or present data in published docu-

ments in vertical domains, such as finance and academia. According

to the statistics from Li et al. [17], of the 270 IPO prospectuses they

collected, there were 227 tables per prospectus and 0.5 tables per

prospectus page on average. Of the 762 auditor reports they col-

lected, there were 65 tables per report and 1.38 tables per report

page on average. Consequently, a tremendous amount of important

data are stored in tables.

Unlike the data stored in machine-friendly formats such as re-

lational databases, the data stored in general tables are difficult

to understand and apply to downstream tasks. To make tables

compact and intuitive for humans, table creators typically project

high-dimensional data to two-dimensional layouts by leveraging

visual grammar (e.g., indentation, font style, merged cell) [24]. It

https://creativecommons.org/licenses/by/4.0/
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A B C
1 2019

2 Assets
Changes from

the Previous
Year (%)

3 Current 21,614 12.4 
4 Inventories 16,883 18.1 
5 Cash and cash equivalents 4,731 -4.2 
6 Non-current 2,341 5.0 
7 Trade and other receivables 921 17.9 
8 Inventories 1,420 1.2
9 Total 23,955 11.8 

A3

A9

A6

A4

A5

A7

A8

Left hierarchy
tree

Top hierarchy
tree

(a) Top and Left Hierarchy Trees

A B C D E F

1
Accounts 

Receivable
In Credit 

Period
Rate Outside Credit 

Period
Rate

2 2015/12/31 9,549.48 8,063.10 84.43 1,393.38 14.59 
3 2016/12/31 9,348.04 8,602.26 92.02 621.96 6.65 
4 2016/12/31 13,332.10 11,485.92 86.15 1,823.05 13.67 
5 2018/06/30 9,515.41 7,442.60 78.21 2,072.81 21.78 

2015/12/31 Accounts Receivable OutsideCredit Period14.59 Rate

B1 C1 D1 E1 F1Juxtaposition
Continuity

(b) Juxtaposition of Cells

Figure 2: An example illustrates the relationships between cells. Best viewed in color.

brings substantial flexibility to the table layout. However, such

flexibility poses a considerable challenge in automatically parsing

tables. Most modern powerful data manipulation tools and table

understanding models make a strong assumption that the table is

relational [1, 7, 14, 25]. In addition, converting arbitrary tables into

relational data requires a massive investment in table layouts and

specific scripts. As a result, these valuable data are still locked in

the flexible tables.

One critical step to understanding data in tables is extracting

numerical data from tables. The semantics of a numerical data

point can be expressed as a numerical tuple consisting of a value

and several descriptions. Furthermore, a table can be parsed into

a set of numerical tuples, as shown in Figure 1. Numerical tuples

contain the whole meaning of data. Moreover, they are organized

in a relational format with direct and transparent relationships

between elements, making them easy to use for machines. However,

the elements of a numerical tuple are usually scattered among

several cells. For example, to understand the cell C4 in Figure 1,

we need to consider the cells B1,B2,C2,A3,A4 and then get its

corresponding numerical tuple with the meaning: “Compared from

the previous year, the change of inventory in current assets for

2019 is 18.1%.”. Therefore, extracting numerical tuples from tables

is a vital while challenging task. Broadly speaking, the process of

extracting numerical tuples can be imaged as an inverse process

of table making. Before users create a table, the high-dimensional

raw data exists in their minds as independent numerical tuples.

These independent high-dimensional raw data are then partitioned,

grouped, and arranged to form a highly coupled table based on

their correlations. Conversely, extracting numerical tuples is the

process of decoupling a complicated table into several independent

numerical tuples. Therefore, the numerical tuple can be considered

a basic form of data stored in tables.

Understanding the contents in cells and the relationships be-

tween them is crucial for extracting numeric tuples. The relation-

ships between cells can be broadly classified into Hierarchy and

Juxtaposition. (1) Hierarchy. The hierarchical structures in tables

mainly indicate the meaning of belonging and dependency. It de-

pends on their textual semantics and visual appearances. For ex-

ample, in Figure 2(a), the differences of font style and indentation

between A3 and A4, A5 indicate their hierarchical relationships. The
relationships can also be inferred through their texts with some

A B C
1 2019

2 Assets Changes from the
Previous Year (%)

3 Current 21,614 12.4 
4 Inventories 16,883 18.1 
5 Cash and cash equivalents 4,731 -4.2 

… … … 

In 2019, the current assets amounted to 21,614, of which the inventories
amounted to 16,883, cash and cash equivalents amounted to 4,731. They
changed from the previous yeas is 12.4%, 18.1%, and -4.2%, respectively.

A3B1 B2 B3 A4

Figure 3: The difference between tables and natural lan-
guages. The content words in blue boxes are placed in table
cells while the function words in red transparent boxes dis-
appear. Best viewed in color.

finance knowledge (e.g., “Current Assets contain Inventories”). (2)

Juxtaposition. The juxtaposition relationships between cells may

express a semantic continuity. Take Figure 2(a) as a simple example.

The cell B2 and C2 are juxtaposed since they are sibling nodes in

the hierarchy tree. Although there is no hierarchical relationship

between them, the meaning of C2 is carried over from B2, i.e., the
meaning of C2 is “Assets’ changes from the previous year (%)”. A

more complex example is shown in Figure 2(b), which we explain

in Section 2.2. The semantic continuity between juxtaposition cells

is implicitly expressed in the textual semantics of cells. In summary,

extracting numerical tuples from tables requires deep modeling of

textual semantics and visual appearances.

Traditional studies [4, 20] attempt to automatically extract rela-

tional tuples by first inferring the hierarchical tree of table headers

and then constructing a numerical tuple with nodes on the path

from each data cell to the tree root. Recent studies try to reduce

the labor of users while extracting data in tables, such as integrat-

ing spreadsheet data with low human effort [5] or transforming

spreadsheet data using some examples provided by users [1, 16].

Although these studies have made significant progress in extracting

knowledge from tables, most of these methods confront three limi-

tations. (1) They only extract tuples with hierarchical relationships

but do not consider the juxtaposition between cells. (2) Some of

them require algorithm-human interaction or rule sets made by

domain experts, thus limiting the applicability of these methods. (3)
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They only evaluate their systems on small corpora, such as SAUS

R200 [5], WEB R200 [5], WEB R100 [4], TROY200 [20], which have

up to 200 tables. The rule-based and machine learning methods on

a small dataset are susceptible to overfitting or becoming unstable

due to outliers.

In this paper, we propose a new framework to extract numerical

tuples from tables and evaluate our framework on a large test

set. Specifically, we suppose the value in a numerical tuple as the

pivot and partition the tuple into several <value, description> pairs.

Thus, the tuple extraction task is converted into a binary relation

extraction task. Then we encode each cell into a hidden vector by a

table representation model and aggregate vectors in each candidate

pair to obtain their predicting result. Finally, the pairs with positive

predictions are grouped into numerical tuples by values.

Obviously, representing a cell is the most important part of our

framework. Motivated by the great success of the pre-trained lan-

guage models on numerous tasks of natural languages [8] and

images [9], a range of previous works have explored the potential

of pre-trained models on tabular data. Existing BERT-like models

usually flatten the table into a sequence treating it like a natural

language [7, 14, 22, 25]. The difference between tables and natural

languages is that the flattened sequence of the table usually con-

tains only content words and lacks function words, as shown in

Figure 3. Most function words are replaced by visual appearances

in tables [24]. They express the critical grammatical relationships

among texts while neglected in existing studies. To bridge the gap

between table representation models and language models, we

propose a BERT-based pre-trained language model, TableLM, to

encode tables with diverse layouts. We encode the visual appear-

ances as visual tokens added in the flattened sequence of tables.

TableLM is aware of hierarchy and juxtaposition between cells by

capturing textual semantics of cells and intricate correlations be-

tween texts and visual appearances. Compared to previous studies,

our TableLM has four characteristics. (1) Our TableLM model can

work on arbitrary types of tables because we do not make any

assumptions in table layouts and contents. (2) We deploy a CNN to

encode visual information, which is more reasonable to capture the

commonality over various visual appearances. (3) We remove the

numerical cell in the flattened sequences of tables because numer-

ical cells do not provide much semantic meaning while are high

in proportion and may introduce noise instead. (4) We pre-train

the model on a large corpus based on contrastive learning between

the contextual and local consistency of the cell. In Section 2, we

explain the motivation of these designs in detail.

The evaluation on a large test set shows our framework achieves

the F1-score of 85.63% at the tuple level, which outperforms a well-

designed baseline (80.43%). Besides, we select more complicated

tables from the test set to form a more challenging test set. The

convincing results of experiments on the two test sets demonstrate

the superiority of our model. We also conduct an ablation analysis

to demonstrate the effectiveness of several model components.

2 PROBLEM DEFINITION AND CHALLENGES
2.1 Definition
In this section, we introduce the definition of the table, the numeri-

cal tuple, and the task used in this paper.

Definition 2.1 (Table). A table 𝑇 can be expressed as a matrix

with 𝑁 rows and 𝑀 columns: 𝑇 = {𝑐𝑖, 𝑗 |1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑀},
in which 𝑐𝑖, 𝑗 indicate the cell in the i-th row and j-th column. We

define the set of cells that only contain values as numerical cell

set 𝑇𝑣 , and define non-numerical cell set as 𝑇𝑠 , so 𝑇 = 𝑇𝑠 ∪𝑇𝑣 and
𝑇𝑠 ∩𝑇𝑣 = ∅ hold.

Definition 2.2 (Numerical Tuple). A numerical tuple in a table

can be presented with the pair of 𝑟 = (𝑣, 𝐷), which 𝑣 is the pivot
value of the numerical tuple, 𝐷 = {𝑑𝑖 |1 ≤ 𝑖 ≤ 𝐾} is the description
set, 𝐾 is the number of descriptions, and it may be different over

tuples. Generally, 𝑣 and the elements in 𝐷 are a cell in table 𝑇 , i.e.,

𝑣 ∈ 𝑇 and 𝑑𝑖 ∈ 𝑇 . We define 𝑅 as all numerical tuples in a table.

Definition 2.3 (Numerical Tuple Extraction). Given a table 𝑇

with its numerical cell set 𝑇𝑣 and non-numerical cell set 𝑇𝑠 , for

each candidate cell 𝑣 ′ ∈ 𝑇𝑣 , our framework aims to extract its

corresponding description set 𝐷 ′ ⊂ 𝑇𝑠 to construct a tuple 𝑟 ′ =
(𝑣 ′, 𝐷 ′) that can express the full semantics of that cell. Note that

the 𝐷 ′
of some candidate cell 𝑣 ′ can be empty, which means this is

not a meaningful numerical tuple. The final predicted result of the

framework is a set of numerical tuples: 𝑅′ = {𝑟 ′
1
, 𝑟 ′
2
, ...}.

2.2 Challenges
The challenges of extracting numerical tuples are summarized into

two aspects.

2.2.1 The intricate correlations between cells. Elements of a nu-

merical tuple are scattered in table cells and connected with their

correlations. These correlations are expressed in the hierarchy and

juxtaposition continuity of cells.

• Hierarchy. Hierarchy in tables can usually be expressed as

trees, just like Figure 2(a). In general, the semantics of a node is

constrained by its ancestor nodes. For example, in Figure 2(a), the

“inventories” in cell A4 and A8 belong to “Current” and “Non-current”
“Assets”, respectively. The textual semantics and differences in visual

appearances between cells express the hierarchy between cells.

• Juxtaposition. Two nodes with a juxtaposition may have a

semantically progressive relationship. We explain the more com-

plicated example in Figure 2(b). In this table, cell B1, C1, D1, E1, F1
are juxtaposed. However, there are complex semantic relationships

between them that forms a directed graph as shown in the top of

Figure 2(b), e.g., the meaning of F1 is carried over from B1 and E1,
the meaning of D1 is carried over from B1 and C1. In general, the

semantic continuity between juxtaposition cells mainly depends

on their textual information.

Unfortunately, it is difficult for machines to understand the text

or visual information, let alone capture such relations.

2.2.2 The textual and visual information of tables. Table is a two-
dimensional multi-modal language. It adopts a different linguistic

paradigm from natural language [24]. In tables, textual information

carries semantic content, visual appearances chiefly express gram-

matical relationships, just as content words and function words in

natural language.

• Textual semantics. Texts in cells are typically sentence frag-

ments, leading the individual cell to hard express a complete mean-

ing. Moreover, texts in tables may contain domain knowledge in

specific domains. For example, the tables in Figure 2 consist of many
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2018 2017

Revenue % Changes from the 
Previous Year (%) Revenue %

Registered address
China ***** ***** ***** ***** *****
Japan ***** ***** ***** ***** *****
Singapore ***** ***** ***** ***** *****
Korea ***** ***** ***** ***** *****
Asia ***** ***** ***** ***** *****
Rest of world ***** ***** ***** ***** *****

***** ***** ***** ***** *****
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Figure 4: MLM loss is not ideally suitable for tables.

proper terms from finance as the two tables come from companies’

annual reports.

• The visual appearances. There are various visual appearances

inside tables. For example, there are three kinds of visual appear-

ances in the table of Figure 2(a). (1) Font styles. The bold font in

cell A3, A6, A9 express hierarchical relationships between them and

other cells with normal font in column A. (2) Indentations. The dif-
ferent level of indentations between cell A3, A6, A9 and other cells

with no indentation in column A. (3) Separation lines. There are two

horizontal separation lines below row 2 and 8, which divide the

table into three parts. The first line separates the table header and

data cells. The second line indicates the hierarchical level between

row 9 and other rows.

Various visual appearances in tables are grouped in a coordinated

and regular manner, expressing the relationship and semantic dif-

ferences between cells. They express grammatical relationships like

function words in natural language. However, visual appearances

implicitly exist in tables and are hard to encode, unlike function

words with some fixed tokens representing limited meanings.

2.3 The Motivation of Model Design
The proposed model TableLM is a BERT-based model with some

specific designs motivated by several observations on tables.

Observation 1. Numerical cells contain less semantics. Typically,
numerical cells contain only a specific value, which is not impor-

tant for extracting their numerical tuples. There are fewer visual

appearances and semantics in them. Even if we replace the value

in a numerical cell with any other value, the descriptions of its

numerical tuple do not change. Moreover, they are high in propor-

tion and may introduce noise instead. In our dataset from finance,

the average percentage of numerical cells in each table is 63.29%,

leading to excessive tokens in the input sequence. Furthermore, it

significantly increases memory and time consumption of BERT-

based models, which is typically limited to the token length of 512

since the attention mechanism.

Motivated by this observation, we disregard the numerical cells

in tables during encoding tables. Specifically, we delete all tokens

in numerical cells in the flattened sequence of tables. Then, the

representation of a numerical cell is obtained according to the

non-numerical cells in the same row and column as it. This design

significantly improves the efficiency of our model and enables the

model to accommodate larger-sized tables.

Observation 2. The commonality of visual appearances of tables.
There are many kinds of visual appearances in tables with flexible

2019 InventoriesCurrent Assets Changes from the previous year18.1

2019 InventoriesCurrent Assets16,883

B1 A4A3 B2 C2C4B1 A4A3 B2B4

A B C
1 2019

2 Assets
Changes from

the Previous
Year (%)

3 Current 21,614 12.4 
4 Inventories 16,883 18.1 
5 Cash and cash equivalents 4,731 -4.2 
6 Non-current 2,341 5.0 
7 Trade and other receivables 921 17.9 
8 Inventories 1,420 1.2
9 Total 23,955 11.8 

B4 B1 B4 A3 B4 B2 B4 A4 C4 B1 C4 A3 C4 B2 C4 A4 C4 C2

B4 B1 B4 A3 B4 B2 B4 A4 C4 B1 C4 A3 C4 B2 C4 A4 C4 C2

𝑅𝑅 ⋯ ⋯

⋯ ⋯

⋯⋯

{�̂�𝑟}

�𝑅𝑅

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐

𝑢𝑢𝑐𝑐𝑢𝑢𝑐𝑐𝑐𝑐

Figure 5: The third and fourth tuples in Figure 1 are converted
by the process. We replace the text with their cell indexes.
Best viewed in color.

functionalities. Traditional studies [10, 13, 20] pay more attention

to specific visual appearances and build rule-based feature systems.

In contrast to them, we consider that various heterogeneous visual

appearances are intended to express the visual differences be-
tween cells, which are homogeneous across tables. For example,

in Figure 2(a), the different font styles and indentations between

rows are designed to show that these rows differ in the hierarchy.

The separation lines divide cells into different spaces, showing the

difference between the cells. In addition, the same visual appear-

ances hold among cells at the same level (e.g., row 4 and row 5 in
Figure 2(a)). In summary, the different visual appearances or their

combinations serve to express different hierarchies. Cells in the

same hierarchical level have the same visual appearances. There-

fore, we deploy a convolutional neural network to capture such

visual differences over cells.

Observation 3. BERT’s masked-language modeling (MLM) loss is
not ideally suitable for tables. Masked language modeling loss is

introduced from BERT [8]. It masks a part of random tokens in the

input sequence and recovers them with other tokens by the model.

However, tables often exemplify a series of entities with the same

type, confusing the MLM loss target when recovering the tokens

of masked entities. In Figure 4, if we mask the token “China” in

cell A4 and want to recover it, the model may be confused between

the target “China” and other country names. Such entity lists are

widely found in tables but are rare in natural language. Motivated

by the observation, we propose a new pre-training target based

on contrastive learning. The idea is to require the model to learn

high-level information such as entity type rather than recover the

specific words. For example, in Figure 4, when the token “China” of

cell A4 is masked, we require the model to learn the cell A4 should

be a country instead restore the original “China”.

3 FRAMEWORK
This section introduces our framework in detail. First, Section 3.1

introduces how to convert the problem of numerical tuples extrac-

tion into a binary relation extraction task. Then, the architecture of

our TableLM and the procedure of pre-training and fine-tuning are

described in Section 3.2, Section 3.3, and Section 3.4, respectively.

3.1 Framework Overview
The first question is how to get the numerical cell set 𝑇𝑣 and non-

numerical cell set 𝑇𝑠 of a table. The numerical set 𝑇𝑣 includes the

cells that only contain values. It can be easily obtained by writing a

simple regular expression script with some rules. Then we further
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Cell A9Cell A5Cell B1

The hidden vectors for each cell in 𝑻𝒗	:The hidden vectors for each cell in 𝑻𝒔 	:

Transformer

Embedding

2019[SEP] 	⋯ [SEP] Cash and cash equivalents 	⋯ [SEP] Total [VIS] VB1 	⋯ NB3VA9 	⋯ NC9
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+ + +

𝑁×

Embedding

Numerical
Attention

V K Q

HB1 HA5 HA9	⋯	⋯ HB3 	⋯ HC9

Figure 6: The architecture of TableLM. It encodes a table by capturing both textual and visual information. Best viewed in color.

10 	⋯ 0 1 2 	⋯ 0 0 	⋯ 00 	⋯ 0Position
Embeddings

Row
Embeddings 11 	⋯ 2 2 2 	⋯ 0 1 	⋯ 39 	⋯ 9

Column
Embeddings BB 	⋯ C C C 	⋯ 0 B 	⋯ BA 	⋯ C

Row Span
Embeddings 11 	⋯ 1 1 1 	⋯ 0 1 	⋯ 11 	⋯ 1

Column Span
Embeddings 22 	⋯ 1 1 1 	⋯ 0 2 	⋯ 11 	⋯ 1

Segment
Embeddings 00 	⋯ 0 0 0 	⋯ 1 1 	⋯ 21 	⋯ 2
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� 2019

� Assets
Changes from

the Previous
Year (%)

� Current 21,614 12.4 
� Inventories 16,883 18.1 
� Cash and cash equivalents 4,731 -4.2 
� Non-current 2,341 5.0 
� Trade and other receivables 921 17.9 
� Inventories 1,420 1.2
	 Total 23,955 11.8 


�


	


�


�


�


�


�

���� ��������

����

�	
 ��������

����

��

�� ��


 � �
� 2019

� Assets
Changes from

the Previous
Year (%)

� Current 21,614 12.4 
� Inventories 16,883 18.1 
� Cash and cash equivalents 4,731 -4.2 
� Non-current 2,341 5.0 
� Trade and other receivables 921 17.9 
� Inventories 1,420 1.2
	 Total 23,955 11.8 


�


	


�


�


�


�


�

���� ��������

����

�	
 ��������

����

Visual representation of cells

Figure 7: The embedding layer of TableLM.

get the non-numerical cell set:𝑇𝑠 = 𝑇 −𝑇𝑣 . The statistics show that

our script loses just 0.3% correct numerical tuples in our dataset.

For each candidate value 𝑣 ′ in𝑇𝑣 , we extract a subset 𝐷 ′
from𝑇𝑠 ,

as the descriptions of the value. A numerical tuple can be presented

as 𝑟 = (𝑣, 𝐷). We split it into several pairs of 𝑟 = {(𝑣, 𝑑𝑖 ) |𝑑𝑖 ∈ 𝐷},
Thus, the output becomes a union set of such pairs. Figure 5 illus-

trates the process. The original numerical tuples 𝑅 are converted

into a set of 𝑟 and then are unified to the set of pairs 𝑅.

Given a table 𝑇 with its annotated numerical tuples 𝑅, we de-

scribe our framework in the training phase as follows.

(1) The annotated numerical tuples 𝑅 are converted into 𝑅.

(2) The two sets 𝑇𝑣 and 𝑇𝑠 are generated from 𝑇 .

(3) We construct the candidate set of pairs: 𝑅𝑐 = {(𝑣 ′, 𝑑 ′) |𝑣 ′ ∈
𝑇𝑣, 𝑑

′ ∈ 𝑇𝑠 }. The label of each candidate pair is 1 if it belongs

to 𝑅 else 0.

(4) For each candidate pair, the TableLM model predicts its label.

(5) The parameters of TableLM model are updated according to

the differences between predicted result and labels.

During the inference and testing phase, we can group pairs pre-

dicted to be positive by their values and obtain the final extracted

numerical tuples.

3.2 TableLM Architecture
The architecture of TableLM (Figure 6) is based on BERT’s en-

coders [8] with some extensions to encode visual appearances and

tabular structures of tables. Generally, we treat the cells in the

𝑇𝑣 and 𝑇𝑠 in different ways. We only leverage the textual tokens

and visual appearances of cells in 𝑇𝑠 as the input. For numerical

cells in 𝑇𝑣 , we deploy a Numerical Attention module to obtain the

representations of them based on the representations of cells in 𝑇𝑠 .

To encode the visual appearances, we deploy the vision module

of TaFor [24] ahead of the TableLM. This module first applies a

CNN in pixels of the entire table and then another CNN at the cell

level. It finally aggregates features into cells, allowing us to get

a visual representation for each cell (including merged cells) by

indexing. Then, we place the visual token of each cell in 𝑇𝑠 at the

end of the input sequence to complement the missing part of the

flattened sequence as a language.

Next, we introduce: (1) how the embedding layer converts table

content to input embeddings; (2) the detailed structure of N stacked

Transformer encoders with our tabular attention; (3) how to get

the hidden vector of each cell in a table.

3.2.1 Embedding Layer.
As shown in Figure 7, a table is flattened into a sequence of tokens

which consists of three components: text part, vision part, numer-

ical cell part. Note that although the input of the Transformer

encoder does not contain numerical cells, the embedding layer also

embeds each of them into an embedding vector. For embedding this

sequence with its tabular structure, we extend the original embed-

ding layer of the Transformer with several additional embeddings.

• Token Embeddings. For the text part, we concatenate all tokens
in the non-numerical cells (𝑇𝑠 ) and place a special token [SEP] at
the beginning of each cell. For the vision part, the first is a special

token [VIS] to separate the text part and vision part. The following

are the visual representations of non-numerical cells in 𝑇𝑠 . For

the numerical cell part, we replace its value with a special token

[NUM], since the specific value in numerical cells is not important

in our task. Finally, the tokens in the text and numerical cell parts
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are converted to embedding vectors by an embedding table, the

dimension of which is the same as visual representations.

• Position Embeddings.We take the index of each token in the

cell instead of in the sequence as its position ID. Because the tokens

in adjacent cells in tables are typically not semantically contiguous.

• Row / Column Embeddings and Span Embeddings. The
tabular position of a cell can be presented by (𝑖𝑑𝑟 , 𝑖𝑑𝑐 , 𝑠𝑝𝑎𝑛𝑟 , 𝑠𝑝𝑎𝑛𝑐 ),
where 𝑖𝑑𝑟 and 𝑖𝑑𝑐 indicate the row index and column index of the

cell, 𝑠𝑝𝑎𝑛𝑟 and 𝑠𝑝𝑎𝑛𝑐 indicate the number of rows and columns

spanned by the cell. For example, the position of cell B1 is presented
(1, 𝐵, 1, 2). We add four embedding layers to encode them.

• Segment Embeddings. It takes two values: 0 for textual tokens

and 1 for visual representations of cells. A final embedding layer to

convert it into vector space.

3.2.2 Transformer with Tabular Masked Attention.
The Transformer has been widely used in natural language models

and is well adapted for sequential data. A Transformer block is

composed of N stacked multi-head self-attention layer followed

by a point-wise, fully connected layer [8]. We perform a masked

attention mechanism in the self-attention layer in the Transformer

to make the model aware of the tabular data. We restrict each token

in the self-attention layer to see only tokens in the same row and

column as itself by using a symmetrical binary matrix𝑀 . Formally,

the masked attention is design as follows:

attention(𝑄,𝐾,𝑉 ) = softmax(𝑄𝐾
𝑇

√
𝑑
𝑀)𝑉 . (1)

Here 𝑄 , 𝐾 , 𝑉 are inputs of Attention function; 𝑑 is the dimension

of 𝑄 , 𝐾 , 𝑉 ;𝑀 is the tabular visibility matrix. We define the tabular

visibility matrix𝑀 to enable tabular attention, i.e., we set𝑀𝑖, 𝑗 = 1

if token𝑖 and token𝑗 are in the same row or column. We assume

that a merged cell belongs to all the rows and columns it spans.

Note that even though we restrict each token to interact with other

tokens in the same row or column, they can still contact tokens

that are not visible in matrix𝑀 . Because the receptive field of each

token increases as the Transformer layer gets deeper.

3.2.3 Cell Representations.
After the stacked Transformer blocks, the output contains the hid-

den vectors of tokens in non-numerical cells and visual tokens.

These tokens have interacted with each other. We first introduce

how to get the hidden vector of each cell. Cells in tables are divided

into two sets: non-numerical cells (𝑇𝑠 ) and numerical cells (𝑇𝑣 ).

• Non-numerical cells (cells in 𝑇𝑠 ). As shown in top left of

Figure 6, the hidden vector of each non-numerical cell is calculated

with the output hidden of its special token [SEP] and its visual

token 𝑉𝑖, 𝑗 :

𝐻𝑖, 𝑗 = LayerNorm([SEP]𝑖, 𝑗 +𝑉𝑖, 𝑗 ) (2)

• Numerical cells (cell in 𝑇𝑣). We perform numerical attention
to obtain the hidden vector of numerical cells, shown in the top

right of Figure 6. The structure of numerical attention is the same

as multi-head attention in the Transformer, except that the 𝑄 of

attention is the embeddings of numerical cells, and the 𝐾 , 𝑉 of

attention are the output hidden of the Transformer.We also perform

the tabular visibility matrix𝑀 in the numerical attention.

2018 2017
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Previous Year (%) Revenue %
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Figure 8: Illustrations for Cell Contrastive Loss. The original
table is in Figure 4

3.3 Pre-training TableLM
We only pre-train the stacked Transformer that does not involve

numerical cells, so they are not considered during pre-training.

As we mentioned in Section 2.3, the MLM loss in BERT is not

ideally suitable for tables. Therefore, we perform a new pre-training

objective to learn the high-level information of each cell with con-

trastive learning. In addition, we also adopt the Masked Language

Modeling objective with the whole-cell masking strategy to capture

the relationships between cells as [22]. The pre-training objectives

are introduced as follows.

• Cell Contrastive Loss (CCL). Cells are the basic unit of the
table to list data and record text segments. Moreover, the elements

of numerical tuples are cells. Therefore, the representations of cells

are crucial for our task of numerical tuple extraction. Cell Con-

trastive Loss learns high-level information about cells through the

supervision of intermediate representations. The procedure of cal-

culating CCL is illustrated in Figure 8. We first randomly select

cells with a probability of 15%, then replace each of their textual

tokens with a special token [MASK]. On the one hand, we feed the

sequence with masked tokens into TableLM, outputting the hidden

representations of masked cells generated by their context, e.g.,

𝐻
g

𝐴4
, 𝐻

g

𝐴9
, 𝐻

g

𝐵2
in the top left of Figure 8. On the other hand, for

each masked cell, we construct a sequence consisting of all the orig-

inal words in it and a special leading token [SEP] and feed it into

TableLM. It can be interpreted that we input each masked cell into

TableLM as a separate table. In this way, the hidden representations

of masked cells generated by their local text are obtained from their

special leading token [SEP], as shown in the top right of Figure 8.

Note that these TableLMs in Figure 8 share their parameters. Then

we perform the contrastive prediction task inspired by SimCLR [3].

For the contextual representation of a masked cell, we treat its

local representation as its positive example and the local represen-

tations of other masked cells in the same minibatch as negative

examples. Then, we maximize the similarity between positive pairs

and minimize the similarity between negative pairs. More formally,

let sim(𝑢, 𝑣) = 𝑢𝑇 𝑣/(∥𝑢∥ ∥𝑣 ∥) denote the cosine similarity between

𝑢 and 𝑣 , M denote the set of masked cells in the batch. The loss

function of CCL is defined as:

LCCL = −
∑︁

𝑐𝑖 ∈M
log

exp(sim(𝐻g

𝑐𝑖 , 𝐻
𝑙
𝑐𝑖
)/𝜏)∑

𝑐 𝑗 ∈M exp(sim(𝐻g

𝑐𝑖 , 𝐻
𝑙
𝑐 𝑗 )/𝜏)

, (3)
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where 𝜏 denotes a temperature parameter.

•Masked LanguageModeling (MLM).Masked language Mod-

eling objective randomly masks tokens in the input sequence and

predicts these masked tokens. In TableLM, we adopt the MLM ob-

jective upon the selected masked tokens in the CCL objective. Let

L𝑀𝐿𝑀 denote the loss of MLM objective.

The final pre-training loss is calculated as L = L𝐶𝐶𝐿 + L𝑀𝐿𝑀 .

3.4 Fine-tuning TableLM on Numerical Tuple
Extraction

With pre-training, TableLM learns the knowledge about various

types of tables from a large table dataset. We leverage the param-

eter of the stacked Transformer as the initial parameter during

fine-tuning. For the task of numerical tuple extraction, we need

to calculate the prediction for each candidate pair of numerical

cell and non-numerical cell (𝑣 ′, 𝑑 ′). We concatenate their hidden

representations and feed it into a FFN [21], followed by a softmax

layer for binary classification. The cross-entropy loss is defined as:

𝑝 ′ = softmax(FFN(concat(𝐻𝑣′, 𝐻𝑑′))), (4)

𝑙𝑜𝑠𝑠 = −
1∑︁

𝑐=0

𝑦𝑐 log
(
𝑝 ′𝑐
)
+ (1 − 𝑦𝑐 ) log

(
1 − 𝑝 ′𝑐

)
, (5)

where FFN consists of two linear transformations with a ReLU

activation in between, 𝑝 ′ is the predicted distribution, 𝑝 ′𝑐 is the

probability that the candidate pair is classified into class 𝑐 .

4 EXPERIMENTS
4.1 Dataset
To evaluate our framework on a large corpus, we collected a dataset

consisting of 19,264 tables fromChinese financial documents crawled

from CNINFO
1
, a website for the China Securities Regulatory Com-

mission. We call the dataset FinTab-Tuples. The tables in finance

are data-intensive containing numerous numerical tuples. Because

recognizing numerical tuples requires extensive domain knowledge,

we recruited nine in-house annotators who have been working in

the finance industry for more than three years. We trained them to

construct the dataset. For each numerical cell in a table, the first

two annotators are responsible for independently annotating the

cells that have a semantic relationship with the numerical cell. If

these two annotators have conflicting results, another annotator

proofreads and corrects the result until there is no disagreement

between the three annotators. The resultant dataset contains 19,264

tables with a total of 604K labeled numerical tuples. We divide the

dataset into training, validation, and test sets in the ratio of 8:1:1.

To demonstrate the difficulty of our dataset, we define complex

tuples as follows: if a tuple contains a description that is not in the

same row or column as the value of the tuple, we call it a complex

tuple. Here, if a cell spans multiple rows/columns, we consider it

to be in the same row/column as the cells in the rows/columns

it spans. Furthermore, we define the table containing at least one

complex tuple as a complex table. Table 1 gives some statistics about

our dataset. There are more than 600K labeled numerical tuples

and 191K complex tuples in our dataset. We consider a numerical

tuple to correspond to its value cell, and more than half of cells

1
http://www.cninfo.com.cn/

Table 1: Statistic of FinTab-Tuples

# tables 19,264

# complex tables 8,906

# labeled tuples 604,111

# labeled complex tuples 191,344

Avg. % numerical cells per table 63.29%

Avg. % tuples in cells per table 58.19%

Avg. % complex tuples in tuples per table 27.22%

Avg. % tuples in cells per complex table 60.01%

Avg. % complex tuples in tuples per complex table 58.90%

Avg. # rows per table 9.32

Avg. # columns per table 5.88

(58.19%) per table contain tuples. It demonstrates that the tables in

our dataset are data-intensive. The average proportions of complex

tuples in tuples per table and per complex table are 27.22% and

58.90%, respectively. The average size of tables is not too large (av-

erage 9.32 rows and 5.88 columns) because the tables are designed

on the page of a financial document for human reading. In addition,

a table with dozens or hundreds of rows is usually similar to a

relational table, used to list a series of records. These tables are in

turn relatively easy to analyze for machines.

The test set of our dataset, FinTab-Tuples-T, consists of 1,927

tables, which is around ten times large than the datasets used in

previous studies [4, 5, 20]. To evaluate the effectiveness of our

framework on complicated tables, we collect all complicated tables

in the test set of FinTab-Tuples to form a more challenging test set

FinTab-Tuples-CT. The experiments on the two test sets produce

more convincing results and analyses.

4.2 Pre-training Details
4.2.1 Dataset for Pre-training. In order to boost the performance

of the TableLM, we pre-train it on the table dataset FinFormu-

las [24]. The FinFormulas dataset consists of 190,179 tables from

various types of 4,746 Chinese financial documents, also crawled

from CNINFO. We ensured that the two datasets FinTab-Tuple and

FinFormulas do not contain duplicate tables to avoid the problem

of data leakage.

4.2.2 Pre-training Configuration. TableLM is based on BERT archi-

tecture, so its configuration aligns with BERTBASE. Since we adopt

in-cell position embedding to capture the semantics of text segments

in cells, the parameters of TableLM are initializedwith BERT’s token

embeddings, position embeddings, and encoder weights. Specifi-

cally, we start pre-training from Chinese-BERT with whole word

masking [6]. We pre-train TableLM for 100 epochs with 10K warm-

up steps on 7 GeForce RTX 2080 Ti. The pre-training procedure

takes around 7 days with a batch size of 4 tables in each GPU. The

temperature in Cell Contrastive Loss is set to 0.07. AdamW [18]

and linearly decayed learning rate schedule with an initial 5e-5

are deployed for pre-training. We keep the first 20 tokens in each

cell and filter out tables whose flattened sequences are longer than

800. Since we use in-cell position rather than global position in the

input sequence, the input length of our model can exceed 512.

http://www.cninfo.com.cn/
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4.3 Experiments Setup
4.3.1 Fine-tuning Configuration. In the fine-tuning procedure, we

initialize the parameters of the stacked Transformer in TableLM

from the pre-training result. The parameters of numerical attention

are initialized randomly. The hidden size in numerical attention is

the same as the multi-head attention in Transformer of TableLM,

which is 768. The model is trained for 200 epochs with a batch size

of 15 and a learning rate of 3e-5 in the training set of FinTab-Tuples.

4.3.2 Metric. We have three levels of metrics to demonstrate the

effectiveness of our framework.

(1) F1-score at pair level. It can be easily calculated by comparing

candidate pairs’ predictions and ground truth labels.

(2) F1-score at tuple level. We can define the precision and recall

at tuple level as:

𝑝 =
|𝑅′ ∩ 𝑅 |
|𝑅′ | , 𝑟 =

|𝑅′ ∩ 𝑅 |
|𝑅 | . (6)

Here, 𝑅 denotes the set of ground truth numerical tuples, 𝑅′ denotes
the set of predicted results, |·| indicates the length of a set. Then,

the F1-score is defined as: 𝐹1 = (2 ∗ 𝑝 ∗ 𝑟 )/(𝑝 + 𝑟 ).
(3) Table Level Accuracy. We calculate the percentage of tables

whose numerical tuples are all correctly extracted.

4.3.3 Compared Methods. We compare our TableLM against with

TaFor [24] based on deep neural networks. TaFor is proposed

to represent a table for recognizing its formulas. It has the same

functionality as TableLM, which encodes a table and produces hid-

den representations of its cells. TaFor leverages a CNN to capture

the visual information of tables and then performs two LSTM to

capture the correlation within row headers and column headers,

respectively. Finally, the hidden vector of each cell is obtained by its

corresponding row header and column header. In the comparison

experiment of TaFor, we adopt the same framework introduced in

this paper, except that replacing TableLM with TaFor. We use the

same configuration as their paper.

4.4 Effectiveness Evaluation
4.4.1 Method Performances. Table 2 lists the results of our TableLM
compared with the baseline TaFor. The results on the test set

FinTab-Tuple-T shows that the proposed TableLM achieves superior

performancewith 71.44% in table accuracy, 𝐹1 = 96.99% at pair level,

and 𝐹1 = 85.63% at tuple level, which are higher than TaFor (63.06%,

95.53%, 80.43%, respectively). When evaluated on the challenging

test set FinTab-Tuples-CT, the performance of all methods degrades

to some extent, as shown in the last three columns in Table 2. Such

a decline illustrates that complex tuples in the dataset are more

challenging to extract. In this case, our TableLM still outperforms

the baseline of TaFor (79.44% vs 74.28% at tuple level). Note that

the CNN for capturing visual information in TableLM is borrowed

from TaFor. It indicates that the Transformer structure is better at

capturing the correlations between tokens and visual appearances

in tables than LSTM.

4.4.2 Ablation Study. In Table 3, we conduct an ablation study to

evaluate the effectiveness of components of our model.

• The effectiveness of visual information. Our TableLM encodes

visual appearances as visual tokens and places them into stacked

Table 2: Results (%) of methods on two test sets. Here, Acc.
is an abbreviation for accuracy, F1-P is the F1-score at pair
level, F1-T is the F1-score at tuple level.

FinTab-Tuples-T FinTab-Tuples-CT

Acc. F1-P F1-T Acc. F1-P F1-T

TaFor 63.06 95.53 80.43 56.47 94.91 74.28

TableLM 71.44 96.99 85.63 63.58 96.20 79.44

Table 3: Ablation Results (%) on two test sets. Here Acc., F1-P,
F1-T are the same as Table 2.

FinTab-Tuples-T FinTab-Tuples-CT

Acc. F1-P F1-T Acc. F1-P F1-T

TableLM 71.44 96.99 85.63 63.58 96.20 79.44
w/o vision 54.34 95.25 77.17 55.53 94.30 71.52

w/o CCL 66.49 96.51 83.54 64.58 95.66 78.34

from scratch 63.47 96.58 83.66 58.66 94.84 74.98

Transformer to complement the missing part of texts in tables as

a language. When we eliminate the visual tokens in TableLM, its

performance drops dramatically from 85.63% to 77.17% (↓8.46%)
at the tuple level. The experiments on the challenging set FinTab-

Tuples-CT obtain consistent results. It demonstrates the importance

of modeling visual appearances in table representation models.

• The effectiveness of the CCL objective. When we remove the

CCL objective, the performance on FinTab-Tuples-T decreases by

table accuracy with 4.95% (71.44% → 66.49%) and tuple level F1-

score with 2.09% (85.63% → 83.54%). When conducting the ablation

on FinTab-Tuples-CT, the F1-score at pair and tuple levels is still

higher. Clearly, the CCL helps our TableLM achieve better results.

• The effectiveness of pre-training. We train the TableLM from

scratch and report the results on Table 3. On the test set FinTab-

Tuples-T, its performance at tuple level is lower than full TableLM

with around 2% and on par with TableLMwithout CCL. However, on

the test set FinTab-Tuples-CT, the performance of TableLM without

pre-training drops significantly. Since the test set FinTab-Tuples-CT

contains hundreds of complicated tables, it demonstrates that the

pre-training improves the model’s ability to capture the semantics

of complicated tables.

5 RELATEDWORK
Data Extraction in Tables. Early studies transform data in a re-

lational table into databases by mapping the attributes of original

tables and target databases [12, 19]. Hung et al. [15], Shigarov and

Mikhailov [20] proposed a rule-based method that requires con-

version rules provided by users. These methods assume the input

table is relational and are failed to handle other types of tables. The

hierarchical relationships between cells were observed by Chen

and Cafarella [4], Shigarov and Mikhailov [20]. Chen and Cafarella

[4] first inferred the hierarchical tree of table headers and then

constructed a relational tuple with nodes on the path from each

data cell to the tree root. Shigarov and Mikhailov [20] proposed

a rule-based tool TabbyXL based on a domain-specific language

for expressing table analysis and interpretation rules. They ana-

lyze many types of table hierarchical layouts. However, the two
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methods neglect juxtaposition relationships among cells and only

evaluated their methods on the performance of inferring the hierar-

chical structure of tables. Chen and Cafarella [5] leveraged the user

feedback for extracting hierarchy structure in their semiautomatic

method. Barowy et al. [1], Jin et al. [16] perform data transfor-

mation based on the examples provided by users. These methods

require a human-computer interaction process.

Compared with existing works, the proposed framework lever-

ages deep neural networks’ powerful representational learning

capabilities. It obtains the representation of cells end-to-end, avoid-

ing massive investment in table layout and tedious rules made by

domain experts. Moreover, we evaluate our model on a large corpus

around ten times larger than the dataset in previous works.

Table Representations. In fact, a range of prior work has ex-

plored the potential of pre-trained Transformers on tabular data.

TAPAS [14] and TaBERT [25] from the NLP community pre-trained

Transformers over tables and texts to address question answering

on relational tables. TURL [7] proposed a structure-aware Trans-

former encoder with a new Masked Entity Recovery objective to

capture knowledge embedded in the relational Web tables. Their

structure-aware Transformer inspires our tabular masked attention.

However, compared with them, our TableLM can be adopted in ar-

bitrary tables since we do not make any assumption in table layouts.

TUTA [22] define two bi-dimensional coordinate trees of row head-

ers and column headers and encode them in Transformers. They

pre-trained their model jointly with two new objectives with the

MLM objective. Interestingly, the Cell-level Cloze in TUTA is also

designed to learn representations at the cell level, similar to our Cell

Contrastive Loss. However, our Cell Contrastive Loss pays more

attention to cells’ high-level semantics (e.g., entity types). Some

of them encode visual appearances with several hand-crafted fea-

tures [10, 13, 20], which is different from our visual tokens. It is more

reasonable that use CNN to capture the commonality among visual

appearances. A more similar design appears in LayoutLMv2 [23],

where the authors split a document page into four parts and create

one visual token for each parts using a CNN-based visual encoder.

Existing BERT-based methods focus more on the table’s semantic

and spatial structure information. TaFor also learns the represen-

tations of cells in tables by modeling both textual semantics and

visual appearances of tables. We borrowed from TaFor to adopt a

CNN to encode the visual appearances of a table.

6 CONCLUSION
In this paper, we explore the task of extracting numerical tuples

from tables with the pre-training language models, TableLM. We

propose a framework based on the TableLM which converts the

task into a binary classification of cell pairs. The TableLM is a

BERT-based language model for tabular data. It consider both texts

and visual appearances as the model’s input tokens. Finally, we

propose a new objective Cell Contrastive Loss to pre-train the

TableLM jointly with the MLM objective. In future work, we will

continually explore the application of extracted numerical tuples

to various downstream tasks to evaluate the effects of this task. In

addition, we will conduct more experiments on various tasks of

table understanding to demonstrate the effectiveness of our pre-

training model TableLM.
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